Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.
نویسندگان
چکیده
The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively fine absorptive roots? We measured traits related to nutrient foraging (root morphology and architecture, root proliferation, and mycorrhizal colonization) across six coexisting arbuscular mycorrhizal (AM) temperate tree species with and without nutrient addition. Root traits such as root diameter and specific root length were highly correlated with root branching intensity, with thin-root species having higher branching intensity than thick-root species. In both fertilized and unfertilized soil, species with thin absorptive roots and high branching intensity showed much greater root length and mass proliferation but lower mycorrhizal colonization than species with thick absorptive roots. Across all species, fertilization led to increased root proliferation and reduced mycorrhizal colonization. These results suggest that thin-root species forage more by root proliferation, whereas thick-root species forage more by mycorrhizal fungi. In mineral nutrient-rich patches, AM trees seem to forage more by proliferating roots than by mycorrhizal fungi.
منابع مشابه
Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.
Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific ro...
متن کاملFine Root Productivity and Turnover of Ectomycorrhizal and Arbuscular Mycorrhizal Tree Species in a Temperate Broad-Leaved Mixed Forest
Advancing our understanding of tree fine root dynamics is of high importance for tree physiology and forest biogeochemistry. In temperate broad-leaved forests, ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) tree species often are coexisting. It is not known whether EM and AM trees differ systematically in fine root dynamics and belowground resource foraging strategies. We measured fine ro...
متن کاملMycorrhizal phosphorus economies: a field test of the MANE framework.
The conquest of the land by plants, c. 470 million years ago, was made possible by the arbuscular mycorrhizal symbiosis (Selosse et al., 2015). In fact, the evolution of that symbiosis was so successful that plant roots have to fit into an arbuscularmycorrhizal world. But that conclusion at the same time hides a paradox. If the arbuscular mycorrhizal symbiosis was so successful, which empty nic...
متن کاملThe mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests.
Understanding the context dependence of ecosystem responses to global changes requires the development of new conceptual frameworks. Here we propose a framework for considering how tree species and their mycorrhizal associates differentially couple carbon (C) and nutrient cycles in temperate forests. Given that tree species predominantly associate with a single type of mycorrhizal fungi (arbusc...
متن کاملFacilitation between woody and herbaceous plants that associate with arbuscular mycorrhizal fungi in temperate European forests
In late-successional environments, low in available nutrient such as the forest understory, herbaceous plant individuals depend strongly on their mycorrhizal associates for survival. We tested whether in temperate European forests arbuscular mycorrhizal (AM) woody plants might facilitate the establishment of AM herbaceous plants in agreement with the mycorrhizal mediation hypothesis. We used a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 208 1 شماره
صفحات -
تاریخ انتشار 2015